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A B S T R A C T

The problem of irreversil~ility  in tllexll~oclyl~al~~ics was revisited and analyzed on the
microscopic, stochastic, and mamwsccq~ic  levels of description, It was demoustxatd  that
Newtonian dynamics can k rcpxwsentd in the Rtynolds  fimn when each dynamical vari-
able is dccomlxmxl  into tllc recall and fluctuation c.(mlpmcllts. Additicmd  cquaticms cou-
pling fluctuations and tl~e mean values  f(dlow fxo]n the stal~ilizat,i(m  princiljlc. The main
idea of this principle is that the flue.tuati(ms must be selectd  from the condition that they
suppress the original ilwtability down  to a neutr:tl  stability. Supl)lenwntml  by the stal~i-
lization principle, the H amiltmian,  or Laxgrania]]  formalisms can descrilm the transition
from fully rmwrsiblc  to irrewxsilde motions as a result  c)f the decomposition of chaotic mo-
tions (which are very likely  to occur in many-lmdy problclns)  into regular (nmcrosccq)ic)
motiom  and fluctuations.

On the stochastic level  of description, new phfmm~eI  mlogical  force with mm-Lipscl~itz
properties is introduced. This force as a result:int  of :i larg;c number  of collisions of a
sclcctd  particle with other particles, has characteristics wllicl]  are uniquely Mind by the
tllcrlllo(lyll:tlllicttl  parameters of the process under  ccmsiderat  i(ml and it represents a part
of tllc mathematical f(mnalism dcscxibing rttllcloll]-w:dl<-likv  ]Jl(xcss  with(mt  invoking any
probabilistic. argummts.

Additional  non- Lipscitz  tl]c?rlllo(lyl]al]~ical  foxces were illc(qx)rattd  into macroscopic
models of transport phenomena in order to introduce a time scale. These  forms are effective
only within a sm:Lll domain around equilibria. Withcmt  calwing any changes in other
domains, they are responsilk  for finitt? time of apprcx.whing  equilibria, Such a property is
very important for interpretation of irrcversil~ility  cm the mammwpic  sclLle.

I N T R O D U C T I O N :

Transport phcmomma such as thermal ccmdu(:tivity  and
lihrium  tllexlllo(lyll:i]llical  processtx  which arc desc.rilml  l)y
equations of the following type:

1

(Iiffusion  rcprcsmt  ncm equi-
paral~olic  partial differential

(1)



It is known that Eq. (1) sul)jt?ct  to th~: initial cmditi{m

“
.
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has a unique bounded s(dution  for i! >0.

However, for t <0 the same problem is ill-posted, and that expresses the fundamental
propcrt  y of imnmxibilit  y of thermal ccmductivit  y and difFusi(m. Actually this property
direct  1 y follows frolll  t 11(’  XXol ld laW of t ll~l’lllC)[lyll  itllli CS.

Althcmgh  s(dutiol~s  to Eq. (I) are in sufficiently g(x) c1 agxxmncnts  with experiments,
thcm are still some  logical difficultures  in rt?(:c)ll(’ilii~tioll  of this lll:~crost:c)l>ic:il  phcmomenO-
logical model with the fully reversible Hamiltoni:m [lyllalnics  on the microscopic level,
since, actually the irrcvcrsiljlc procwsscs  d[?scribcd  by Eq. (1), are completely compod
of rcwcrsil~le  cvmts,  and that is known as the irreversil~ility  paradox. However, strictly
speaking, the formal deriw~tit)n  of Eq. ( 1 ) from the microsuq)ic  Hamiltonian mechanics
requires somt?  additi(mal  arguments of a prol~ahilistic  nature. But can these  arguments lm
rcprescmtc?d  in tt?nns  of classical mechanics”? Or , lmme pmcisc?ly,  c:in they be replaced by
some equival(?llt  mcdmnical  f(mces  on the microscopic level’?

1. NON-LIPSC131TZ  MECHANICS

Turning to gynwrning equations of classical dynamics:

d ~L (3L i3Ri =12—.. — = —— .— —-
dt a(j: t3qi 13(j:’ ‘ ‘“””7’ (3)

where  L is the Lagrangian, qi, ii are the generaliz(?(l  coordinates al~~l  velocities, :tl~d  R is the
dissipation function, Ollf? ShCdd recall  that the stl llctllle  of n(~~, . .
by Newtons laws:

. i,, ) is not presclihl
scmle  addit icmal assmnpt  ions ale to lx: ma(l(! in order to ddille.  it. The

‘hat uml”  assumption (which has lxx?n never challenged) is tl lat t hcse fund ions can be
expanded in Taylor series with respect to equililwium  states: ii = O. Ohiously  this
r~?quires the existence of tht? derivdive:

l*l<~atji+O

The departure from that condition was proposed in [8-10], where  the following dissi-
paticm  function was inh oducd:

(4)
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in which

k= F--3 <l, p>l (5)

whilt?  p is a largt? odd number

By selecting large p, one can make k che to 1 so that Eq. (4) is all~~ost  i~l(’l~ti~al  to
classical one (wh(?n k = 1 ) everywhere excludixlg  a small ]lt?ig;lll~orllc)~)cl  of the. equilibrium
point ~j = O, while  at this point:

(6)

Ht?nce,  the Lipschitz txmdition  is violatt?d,  tlw friction form Fi = –.% grows sharply
at the equilibrium point , and then it gradually approaches its “c.lasslcal”  value. This
effect can bc interpreted as a l:latllt’l~~[ttic:il  represmtation  of a jump fr(nn static to kinetic
friction, whcm the dissipation force does not vanish with the vt’locity.

It appears that this ‘rsmall”  difft?rcllct?  Ijetwetul  the friction forms at k = 1 and k < 1
leads to fundamental changes in Newtonian dynaniics. In order  to demonstrate it, we will
comiclcr  the relationship between the tc)tal t?nergy  E and the dissipation function R:

dE
E

. (9R—=. —=--(k+l)ll
dt ‘i 84:i

(7)

Within a small neighborhood of an equilihimn state (whcm the potential energy can
be sd zinc)) the energy  E and the dissipation fmlction Ii have th(? order, respectively:

E~&R@”]atE-+O (8)

Hence,  the as ympot.  at ical form of (7) can be 1 nwsmt d as:

dE—.. = AEW at E -+ O, A = const
dt

3

(9)
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If A > 0 mcl k < 1, tlw equililxium  state l; = O is an attractor where the. Lips-
chitz condition ([ dE/dE l--i m at E + O) is violated. SUch a terminal [8] attractor is
approacJ~cd  by tht? solutifm  originated at E = LEC, > 0, ill fillitt:  till~e:

Obviously, this integral  diverges in classical cast? k ~ 1., wh(m?  tO + m. The motion
descrild  by (9) has a singular solution E s O and zi regular  solution:

In a finite  time th(? motion can rt?ach the equilihium and switch tc) the singular
solution E - 0, and this switch is im?versible.

As wt?ll-lmown  from dynamim of l~c)ll-~:ol~,wxvative  systems, dissipative forces  can
dcst ahilize  the motion when t h(?y fed t 11(? exterl]  al energy  into the system (the t rans-
missicm of mc?:gy from laminar to turlmlent  flow in fluid dynamics, or from rotations to
oscillations in dynamics of flt?xible  systems). In ttmns  of (9) it would mean that A > 0,
.zmcl the equilibrium state E =: O h?comes a terminal repeller [8].

If the initial mmdition  is infinitely c.l(He to this xep{:llm, the transient solution will
escape it during a finite time period:

A 130 ~

I

dE 2AE02
to = —--

.-() A E %- =  ~-~ ‘<m

while  for a regular rt?pel]c?r, the time would be infhlite.

Expr{?ssing  Eq. (9) in terms of velocity at i = 1, ~1 = v,

i) = l?v~, B = C.c)llst  > (), (lo)

one arrives at the following solution:

v = +{ [B(1 – k)t]J’+2}1’2 (11)

As in the case of a tt?rminal  attractor, ht?rt? tl]t? motion is also imwersihle: the time-
backwarcl  motion obtained by formal time inversiml  t + --i in Eq. (11) is imagimuy, since
p is an OCIC1  nul~~lmr  (sm Eq. (5)).

4
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But in addition to that, tt?rminal  repc?llrrs  posst?ss  evtm u~ore suq]rising c.lmrac.teristic.s:
the solution (11 ) lxxwlncs  totally unprdictahle.  lndet?d,  two [lifftnxmt  motions descxilxd
hy t h e  solution ( 1 1 )  arc possible for “allllost  tl~e s:~lllc?”  (v,, =- +& -+ (), or VO = –C -+
O at t =-+ O) initial C(mdititms.

Thus, a tmminal relmllcr rt?prt?smt,s  a vanisllilgly  sl~cmt,  l)~lt  i)lfinitc?ly  lJC)WCX-fUl  “pu]se

of lllll~reclictal~  ility” which is lJmnpc?d  into the syst em vi:i tern linal dissipative? forces.  01)-
viously failure of the uniqueness  of tht? soluticm  ll(?re  results fr(nn tile violatic)ll  of the
Lil~scllitz mncliti(m  at v = O.

H~:ltx,  the noll-Lilmchitz  forces Oli’/ti~i in Eq. (3) followixlg  from Eqs.  (4) al~d (5)
change  the most fundall~ental  property  of tile Newtonian  lll(:cl]allics:  its deterl~lillislll.  At
the same time, tllcsc forces affect  only tile clissipation  fmlcti(m  wllicll  is not prcscxihd  by
t hc Newt on ‘S laws  ally W:ly.

Let us turn to stochastic,  pr(xx?sses  wllic.h connect tht? microscopical  mechanics MIC1
tllc;rll~c)clyl~all~ics.  Tllt?st? pr(w.t:sst?s  arc bast?d  ulxm sol]~c  l~roljal~ilistic  argmnt?nts which can
not be forlnall y derivc?d  froln Newt(mia.n  lntdm.nits. But may IN? they can h? derived  from
I1011-  Lipschitzian versi(m  of Nc?wt(mian  n~t:clmnics? In the ] lcxt item had upon non-
Lipschitz forms wc will introdutx?  a pure mechanical modt?l  c)f rand(m~ walk-the simplest
stochastic process - whost?  macrcxw.ol~ical  il~terpxd at ion ltds t () Eq. (1).

2.  MECHANICAL MODEL OF RANDOM WAI,K

A random walk is a stochastic process wllert> Changtv+ oc.c.~lr  only at fixd times; it
represents the positi(m  at time i ,,, of a particle taking a &nd(ml “step”
of its previous onm.

X,)l indepcmclcmtly

in orch?r to implt?ment  this process ljased only upo]l  tilt? Newton’s laws, consicler  a.
rectilinear moti(m  of a partidt? of unit mass clriveu  l~y a non-Lil~sc.ltitz  force:

.j=v

whmx? v and x are tilt? l)article  velocity and position, reslx?ctively.

Subject to 2(?10 initial condition:

(12)

(13)

(14)



Eq. (10) has a singular solutifm:

(15)

.,

..

and a regular solut it)ll:

‘=+si”w” (16)

These two soluti(ms  co-(?xist  at t = O, and tl~at  is p(msil~l(?  Ix?cause at this point the
Lipschiz  wmditicm fails:

Since

(17)

(18)

the singular solution (15) is unstable., and the particle departs frc)m rest following the
solution (16). This soluticm has two (positive and negativt?)  I)ranchm (since the power  in
(16) includes the square root), and t?ach blanch  c.:in 1x3 cll(m?n with tile same probability
1/2. It should IN notid that as a result  of (1 7), the motion of the particle can Ix initiated
by infinitesimal disturbances (that,  nt?ver  cm] occur  when tile Lil)scllitz  condition is in place:
an infinitesimal initial disturbance cannot lx?come finite in finite  tilne).

Strictly speaking, tlm solution (16) is valid cmly in the tire? interval

(19)

and at t = ~ it coincides with the singular solution (15).

For t > 27r/w, Eq. (15) lwc.olnes  ul]staljle,  and tht? motion rtq)eats itself to the accuracy
of the sign in Eq. (16).

Hence,  the partick?  velocity v lxwforms  oscillations with rml~mt to its zero value in
such a way that the positive and negative l)ranches of the soluti(m  (16) alternate randomly
after each pmiod  c?qud to 27r/w.

6



Turning to Eq, (13) ,  out? ,Jl)tains  th~? distal Ice bet wt?(’n two adj ammt equilibrium
positions of the particlt?:

Xi —  X:–1  =  * J’”’w(~sinft)3’2 dt = 64(3w)-”5%s/2 = ~]1 (20)

Thus, the equilil~rium  positions of the particle are:

x~ = 0,1] = +h,xz  = :+/1 * /L.ctc. (22)

while  the signs am Iandtnnly  altmnat  d with the equal probal )ilit y 1/2.

Obviously, the pmtick?  preforms an mm?strict  d symmctrit:  random walk: after each
time pmiod

~~
T = — - (23)

w

it changes  its value (n] 3:h (see  Eq. (22)).

The prolmljility density U(X, t) is governed by tht? foll(nving  diffc?rmce  equation:

U(x, i + T) = ;71(2!  – h,i) + ;tl(x + h,t) (24)

while

3. P H E N O M E N O L O G I C A L  F O R C E

Thus, as dmmnstratc?d  almw?,  a non- l,ipschit  ~, f(m.e

F = ‘1)11/V
r

4111/3 si~~wt = +7 3~— sin ~t sinuf

applied to a partidt?  of the mass 7n, leads to a c.lassid  random walk.

7
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It should be stressed that th(? govc?xming equations (12), ( 13) are fully determinis-
tic: they are bad upon the Newton’s laws. The stochasticity ht?rc? is genemtd  by the
alternating stability and instability eff~?cts  clue to failure  of tllr Lipschitz conditions at
equilihia.

Ld us analyze the properties of the force (’28).

First of all, tht:  time avmagy?  of this force is zcm:

F=o (27)

since, as follows from Eq. (26), the signs + and - have equal prol~al~ility.

Ffm the same xcawm,  the ensemble avtuage  of I’ is also mm):

<F>=o

The work clone. by the fcm.e  (26) during cmc step is zero:

I
21T/u 2

()/

27r/w
A = Fvdt =  +V ~ sin 4 

~t sinwtdt = 0,
0 0

(28)

(29)

Sine.c the time average  of the particle’s kinetic enmgy can lx? expressed via the temperature,
one c)btains:

(30)

Then the only unspecified paramt?tm  v in Eq. (26) is exl)ressecl  via the. temperature:

[

——
3W . 8WI{T

1). — ———
4 hl)l

(31)

Hcm T is the almolutc?  ttvnpt?raturt? , and K is the 1 loltzmann’s  constant.

The paramdm w – 1 has tile ordc?r of the tilne  p(?ri(d Ijetwcxm  collisions of the particle:

8
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(32)

Ch the macrckscalc  this is a vely large mud m , mld OI1(?  cm cf nlsi(ler a cent inuous approx-
imation assuming that

fJ--+cQ

Then, aS follows from Eqs. (20), (23), and (31) :

112
7- -+ 0, 11 -+ o, and –- --+ 0.19 ~~ =: 2D

T i’lt

(33)

(34)

and t hereforej  Eq. (24) can lx? re])lad by t lle F( )kker-Plandc  equation, i.e., l~y an one-
dimcmsiomd  version of Eq. (1). It is interesting to tmphasize that the diffusion mcfilcient
D is defined hy the amplitude v of the non- Li~]sdlitz  form (26).

Nc)w the following question can be asked:  does  the force (26) exist in a scmse  that it
Cm IN detected by clirmt  measurements on the mitxmc.epic level’? Prohbly,  not. Indeedl

on that level,  this force is a resultant of a large number  of collisions with c)ther  particles.
However, on the st{whastic  level as an il]termdiat  e between tl~e ]~licrc)-a]lcl-l~~  mro-levels,
the ]Jllellolllellolf)gical  force (26) represents a part of the matll(matical  formalism, and it
can be accepted.

As f(dlows  from Eq. (26), on a mic.m-sc.ale  c)f time

t-T (35)

the system  (12), (13) is not conservative , and the motion is irreversible. Moreover, each
time the partidc arrives at equilibrium point, it totally “forgets)’ its past.

On tht? Conhwy,  on a mamo-sde  of time whfm

1 t >> T,
I

9
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the system ( 12),(13) call be trmted as c,cmst?rva,ti~’~?  basecl upon Eqs.  (28), and (29), and
tllercfore, it is fully revc?lsiblt?. This m(?ans that tht particle WII(M: motion is dt:sc.rilx?d  Ly
Eq. ( 12) w](1 ( 13), call rt?tuni  to its original p(wit  ion p:issil~g  thr{j~@~ all of its previous
Steps backward; howmr, tht? proldility of such :(I1 evf?llt  will be vanishingly  small (I)ut
Ilot zero!), or> in otllm words,  tile pc?riocl of tiln~? to during wllirll  this Cv(?nt can occur is
very large (hut fillitc?!):

T<<to <CO (37)

4. NON-LIPSCHITZ MACROSCOPIC EFI’ECTS:

Tur:~ing  back to the macmscxq)ic  t?qu:ition  (1), one can notice its inconsistency with
the results disrussd  in the last sc?ction,  and ill part iculax, with the mmditim  (37). Inclc?d,
Eq. (1) d(ws not h:tve  ally tim(?  scale whicl~ wOU1(l  allow to im])lement  the condition (37):
tlie time of appr{mr.hing  a tllerll~c)clyl~:ill~ical  t?quilil jrium is m~lx)unclecl,  and thcmfom,  Eq.
(1) includes any rtwmsil)le  sfdutions  even if io -+ m. The o])ly logical way out of this
situation is to introduce a time-scdc?  to into Eq. ( 1 ) so that tl]c?  til~~e  c)f approaching an
equilil>rimn  would be fhitc?. Then one can argu{> that this till~c: is not large enough to
include rew?rsiljle  soluticms.  In odc?r to do that, 1(’t  US tllrl) to Eq. (1), and, for tile sake
of cone.rdeness, t rmt it as al~ c?quat ion ffm t llerlllid  conduct, ivit y. Then, the relationship
bet wcwn the ht?at  flow  q zmd tll(? tc?mperatum  u cm 1 IX? sought ill tilt? following forln:

q == q(~u) (38)

It should lJC (emphasized that the? function (3S) is not l]rescriljcd l)y any Inacroscnpic
laws, and thmcf(me,  it must bc found from t?xpt:rin)entso Tll{? l~asic  mathcunatical  assump
tion abc)ut Eq. (38) is its expendability in Taylor series. Then, for small gradients:

(39)q=–xvu+””  etc.

where  x is the thermal concluctivit y, and this leads to Eq. ( 1). But even if higher  order
gradicmts  of u are taken into account, the timt?  of aljl~roadling  equilibria woulcl still remain
unlx)ulldd.

How(?vc?r,  thert? is anoth(?r lmssibility  in represm~ting  Eel, (3S) if one relax the Lipschitz
condition at vu = O. Indeed,  inst(?d  of (39) one can writt?:

()VIL  ‘-1
q=—x —— V’1l+...  t?tc,

&o
(40)

10



where  k has the form (5), and co has the clilll{~llsif]ll[ility  of vu, i.e.

[co]  =  [vu] (41)

Eq. (40) is different from Eq. (39) only within all infinitesill)ally  small mighlmrhmd  of
the equilibria statm where

otherwise

One can verify that the Lipsch

~2L + O. (42)

()vu ‘-1 ~ ~—. (43)
&o

tz condition for tlw functi(m (40) [it Vu + O is violated:

[*1+- Vu-+o

Mathematical mns[?quenc.m  of this pr(qx:rty  will lx: discusstd Mow.

lhming tc) Eq, (40), me can write the following equation instead  of (1) :

&J=D~ au k[(-) 1
, l–k

(X 9X a , D= =-- == (’(rest > 0
pc

(44)

(45)

WIMNW X, c, and p are tile Coefficient  of th(?r:nal  conductivity, specific heat, and density,
mspmtivdy.  Eq. (45) reduces  to the classical diffusion cquatiml:

(46)

ifk=l.

Let us compare th(: solutions to Eqs.  (45) a)ld (46) sul~j~wt  to the same initial and
boundary c.cmdit  ions. Introducing the function:

11
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(47)

assuming separation of the variables:

Whcm

For k = 1 (S~~ Eq. (46)):

– A tu] =;] e , u; -+ 0 at t -+ ~

For k <1 (See Eq, 45):
●

11, = [(81) 1-’ -A(I - k)i]l/’-k

Here

(48)

(49)

(50)

(51)

(52)

(53)
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5 .  MICROSCOPIC VIEW

In the previous smtiom, the probk?m of irrcwersil~ility  in tllt~rlll{)clyllaxllics  was dis-
cussed  cm the st(x.hast  ic and macroscopic ltwels  ( lf description. T h i s  allcl all the next
smtiom  will be dc?voted  to th(> salne prol>lem, ljut fr(ml tile vicnvl~oint  of th(? nlicrosccq~ic
lcvt?l of dcm.ripti(m. 01] that lmdl the microscopic state of a systmn may be specified in
tmuns of positions and mf)lllellts  of a ccmstitumt set of particl{’s:  tllc~ atoms and molmulas.
Within the Borll-Ol>l](;l~llc~ill~(~r  al~l~roxilll:itioll,” it is possible to c?xprcss  the Hamiltonian
(or the Lagrangian) of a system  as a functions of ,~udear  vaxiables, the (rapid ) moti(ms  of
dm.t mm having hen avmagml out. Making the adcliti(m:il  :Ll)l)lf)xil~l:ttic)l~  that a classical
description is adquat  e, one cxin write the Lagrange (quat i(ms whi Ch govern  the microscopic
motions of tlm systtml:

(59)

Ht?re qi .wld  (ji arc? tht? gemvdized  mordim.tes  :ul(l velocities cl~tirac.terizing  the system,  W
is the kim?tic t?nergy  incllding  tramlatiomd  compol umts  (as well as rot ati(mal components
if polyatomic  m(kdes  aw? cmsich?d),  n is the potential t?nergy  rt?presmting  the dl’eds
of an external fitdd (indllding,  fox examplt?,  the c.t)ldxiiner  walls), tht? particle inte.racticms
and elastic collisions.

All the soluti(ms  to Eqs.  (59) are fully deterministic md rmwrsilde  if the initial ccm-
ditiom  are known t?xactly.  But simx? tht: last r(?quirmm?l~t  is physically unrealistic, small
errors  in initial  txmditi(ms  will grow expollc?ntially  in case of ilwtahility  of Eels. (59).
(Such an imitability may havt? the same origin as the instability ill the famous three-body
problem), As a rc?sult  of that, tht? soluti(m  to Eq. (59) at taills stochastic features, i.e.,
lxmmes  chaotic, and therc?fom,  it hmses its determinism and rrversibilit  y. The cxmmcticm
bet wcxm the dmotic  imt ability and the. problem of irreversil~ili  t y irl tllt?rlllc)clyll:illlics  was
stressed by I. Progogilie  [5]: ‘(TIM? stmc.ture  of the (c~uatiom of motion with “randommss”
on the mic.xosc.ol)ic  lt?vt?l  then emt?rges  as irrevc?rsiljility  01) tll(? macroscopic levt?l”.  Based
upon the same ideas as those introduc.ecl  hy Prigogim,  we will propose a difft?rtmt  math-
mmtid  framework for their implt?mmt  ati o]]. This framework exploits the stal~ilization
principle introcluc.d  and clisc.ussml  in [11]. As will IM shown Ix:low, this principle imposes
some additiomd txmstraints  upm tht’ moti(m , ad that makt?s  the solut icms to Eqs.  (59)
irrcwcmilde.

G. ORBITAL INSTABILITY IN HAMILTONIAN MECHANICS

Most of tht? dynamical processes are so complex that tlloix  mivt?rsal theory which
would c.apturt?  all the clctails  cluring all the time pmiocls  is unthinkable.  That is why the art
of mathematical m(xlding  is to extract only tht? fullclamentiil  aslx?cts of tile l)rocess  and to
Ileglcct  its imignificallt  ft?atmws, witll(mt  losing th~’ core  of information. But ‘)imigmificant
fc?atums”  is uot a simple c(mcept. Ill many cases (wen vanisl~il)gly small forces c;]l cause
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large c.llanges  in the dynamical system param(?ttm , and such situations am intuitively
associated with tht? ccmm?pt  of the instability. ol~viously the flc!stabilizing  forms camlc)t
1X mmsihd as “insignificant features, ” ax~cl  thmt?ftm?, they  ciimot h ignored.  But
sinm they lnay 1X? hlullallly  illclistillgllisl]al)le  ill the? vt:ry lx:~,illllillg, them is 110 way to
ixlcorporate  thcm into tile model. This sillll~ly means that t}le  I11oc1(?1 is not adequate for
quantitative descril)ti(m  of the c(mwslwndillg dyllalllical lJr(x:fIss: it must h dumged or
m(difid,

Howt?vt~r, the illstaljility  dt?livc?rs an ilnportm]t  qualitative? inf(mnation: it mmifrsts
the houndarim of applic.ability of the origilla.1 moclt:l.

W(? will clistillguish  sll(mt  and long-term illstitljilitirs. Sh(mt-tt?rm  instability occurs
Wh(?ll  the system  has alternative staljle statt?s. For dissipative? systmns  such states can be
rcpwsmtt?d Ly static (m pt?riodic  attractors. 11) tht~ very lx~ginllillg of tl~e post-imtd]ility
trallsiti(m  period, the unstable Inotion”  C:ilmot  lx? traced  clll:tlltit:tti~~(!ly,  l)ut it becomes Illore
and Inert? dt?tt?rministic  as it :il]l)r(xu?lles  th(’ attr:ictor. He]lrt:,  a sholt-tmm  instability does
l~ot necessarily  requir~?  a :llodt:l  luodification. Usually this tyl~r of imitability is associated
w i t h  lmlmclt?d  d(wiation of position”  cx)(mlimites  M’ll(M<?  cll:ulgt>s affc:c.t the (?llcrgy c)f the
systcm. Ind{?(?cl,  if the grf)wtl]  of a position mxdillate  persists, the t?llt?x’gy  of tile system
would ht?comt?  ulllx)luldtd.

The long term instability occurs when the system d(xw not have m alternative stal~le
state. Sudl  typ(? of instability txm be ass(w.iatt?d  only with iglloral)lt?  Coorclillates  sillc.e
t hc?sc?  coordinates do Ilot effect  the energy  of the syst t?lu. The lol]g  term il~stability  is the
main muse of chww. It cm occur in tht? form of orl )itd instahilit  y, Hdamard’s  instability,
Rt’ynolcls instability, etc.. We will illustrate the C(mcept  of lollg-tmln instability by the
cmljital  imtal~ility.

First we rtxdl  that a c.ocmdinate  qm is mllc?d ignor:il~le if it dms not entt~r the La-
grmgim  f~mc.t  ion L whilt?  the mrrt:spondil~g  Iloll-(c)llsc?rvative  g~?nt?ralizd  forms Q@ or is
zero:

OL
‘= O, Qn:’Oaqn

(60)

it?., tile gtvlt?ralizd igmmable  impulst?  f’. is constant.

(61)

As follows from Eq.(61),  thc?re exist sud states of dymmical  systems (called stationary
motions) that all tht; positicm (i.e. Il(m-iglloral)le)  m)orclinates  retain  constant  value while
the ignoraljle c.oordimites  vary in amwrb lc.e  wit 11 a linear l:iw.  For example, a regular
prmmsion  of a heavy symmetric gyr(wtqx? is a stationary Illotioll  ~llara~terized  I)y the
equation:

@ = const, Jl = C’omt,  (j = Con.<t (62)
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where  the angle of pr(?ct?ssicm  @ and the axlgle of pure rot:itioll #J are ignorable coordinates,
while  the angle of nutation (3 - an angle formed by the axis of gyroscope and the vertical

is a position Ccx)rdinate.

obviously, stfitionary  motions are not stable  with r(wpect  to ignorable vdt)(:iti~~s:  a
small change  in ja at t = O yields, as time I]rogr(ssm , m arl)itrarily  large d]ange in the
ignorable mmrclimtes  thmnselves.  However l since this change mmmst?s linearly (hut not
exponcmtially)j the?  moti(m  is still considered as pmdictablt?.  111 lxirtic.ul:ir,  the Lyapunov
cxponmts  for stati(mary  moti(ms  are mm:

lim
( )

d(o)t
u =: : 111—- = o

Ii(o)-+o  , t-+w d(o)
(63)

However, in case of nonstationary motions) the iglloral~l(?  txx)rdimite  can exhibit more
sophisticated hhaviors. h mxk?r to demonstrate this, let us consider an imrtial  motion
c)f a particle M of unit Inass  on a  smmth  pseu(hwphme  S having a constant  mgative
tmrvaturtx

Go = Collsi  <0

R.mmdxwi::g  that trajectories of illmtial  motions”  m~wt lJt+ g(x)clesim of s, we
two diffc?r(?nt  trajd(m~es  assuming  that initially they W? pardlt?l  and that
bc?t wecm tht?m,  CO,  is vmy Sm(illc

(64)

will compare
the distance

As shown  in cliffermtid  gy?om?try,  the distance  h?twt?m such geodc?sics  will expomm-
tially increase:

f = ,o.~’~=’,  G’, < 0 (65)

Hcmce,  no math?r how small the? initial  distance  ~., the current distance ~ tends to infinity.

Let us assume now that the accuracy to which the initial conditions are known is
characterized by L, It means  that any two trajtxhries  cannot lx? distinguished if the
distance bctwem them is less than L, i.e. if:

~<L (66)

The period duxing whid~ the inequality (W), h(dds has the ordm:

(67)

However, for
t >> At (68)

these two txa,jtxtcwies  diverge such that they can he distinguished and must be considered
as two differmt trajectories. Moreover, the distwlce between them tends to infinity even
if .50 is small (but not infinitesimal). Tlmt is why the motion, once recorded, cannot
IN reprcduc.d  again (unless the initial tx)nditions  are known (~xactly),  and conseqmlltly,
it attains stochastic fe:itures. TIM? Lyapmmv  exponent for this motion is positive and
Comt ant:

( )

1 ~oemt
u= lim ; 111 —--—-- = J- G(J == Collst > 0 (69)

t+m , d(o)-. o fo
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Let us introduce  a system  of coordimtx?s  at the surface S: tlw coordinate ql ahmg the
geodesic meridialw, and the coordimte  q~ along t he p:iralh~ls. h diffc?rcmtial  geometry
such a system  is called  st~ll~i-gc{)clt?sical.  The square of the distzil]cc  h.twmm  adjticc?nt  point
on the psmdosplmw  is:

Whcm!

and, Ccmst’qmlltly,

while

ds2 == gll dq:+

g]] =:1, glz =0,

i9L—-.
aq~ =

o

(72)

(73)

(74)

Hmce,  ql ~ndq2  l]ltiyr()l(?s  cJfl}()siti()l~  al~cligllt)ralJle  c~c)()rclillatcs,  respectively,

Th(?refom,  m inertial  motion of a particle ou a. psmd(wl)hm?  is stable  with r~?sped
to the position coordimte  q], but it is ullstabk? with rc?spec.t  tit) tllc ignoxal~le  coordinate.
However ,  in cc)l~traclistil~ctioll  tc) the stati(mary  I]lotions  comidt?rd  above, here  the in-
stability is dmracteriz(?cl  Ly cxpmmtial  growth of the igll(mal~le  cxmrdinate,  and that is
why the motion bmmmt?s IIllllreclit’.tal)l(?. It can Im sl~(wll that such a nlotion beccmes
stoc.hastic[l].

Instability withrt?sp~?ct  to ignoraljle  txxmdinates  cm lx? associated with orl~italimta-
bility. Indeed, tllrllillgt(jtllelwst  exal~ll~le,  ollecallr  e]~rest?l~t  tllel]arti(:le  vc?lc)cityvastlle
product :

I~itl~e co~lrse  c}ftl~e il~stal~ility,  tllevt?locity]  )l:tgl~it~lcl~:l  vl, :il~(lc[~l~seclllel~tly,  tllet(~tal
energy,  remain  mlchangt?cl,  wl~ile all the changes afFect (rely 7, i.e. the direction of motion.
hotlmr  words, orl~itdimtahility  leads to re~listrilj~ltic]l~of  tht? total emrgybetween  the
coordim.tes,  and it is charac?t~?rizd  hy positive LyapuM)v  exp(mc?nts.

The results dmmilmd above wt?re related to il)t?rtial  motiorls  of a particle on a smooth
surface. Howcwer,  they can lJe t?asily  gt?mrdiz(?d  to Inotiolls  of my fillite-c~t?gree-c)f-fre(?clolll
mechmical  system l~y using the C.(mcept  of ct)llfigllraticm  space, lndc?d,  if the mechanical
systemhas  N gcmtxdizc?d  coordinates ql(i = 1,2 ,’..., N) allcl is charactt~rized  Ly the kinetic
cmmgy:

JV= tlij~’(] (75)

17



then the configurate ion slmce can IM int roducecl  as an N- dimmwi(mal  space  with the follow-
ing metric tensor:

$’ij  =  (1.ij (76)

while the moti(m of the system is xqnesented  by the Int)tion of the unit-mass partic.lc  in
this configuration space

In order to continue the analogy to the motionof  tllcpal:tidcon  a surface in actual
space  we will c.omidt:r  only tlvo-clilllcllsic)lltil sulwll:m%  of tllc?  hT-clilll(\llsic)llztl  configuratim
spare?, without loss (If gc?mrality. Indc?d, alnotiol]  whichis ilwtal~l(?in my such SUI)SIJMX?,
has tc) be qualifiedas  a)) mlstaldein  theentirt?  b)figuraticm slmcc.

Now the Gaussian curvature of a t wc)-(lil~~~:l~siol~;tl  txmfigurat  i(m suhpace  (ql,  q2 ) fol-

a2a~] 1 82(L22—— _.. —
aqzaqz 2 aqlaql )

(77)

via the Christxdfd  symlds:

(78)

(7!))

Thus, the Gaussian  curvatur<:  of these sul)spatx?s  {lepe~lcIs (dy 01~ the codfi(:i~llts  aij,  i.e.
it is fully determined by the kim?matiml  structure of tht? systtm [see  equation (75)]. h
case of im?rtial motions,  the trajt?c.torit?s  of tht? repmsmtative  particlt? must lx? fpdt?sics  of
the cxmfiguration  space. Imh?(?d,  aS follows  from (74):

whcm s is the arc Coorclimtte  along the. partidt’  trajectcmy:

But then:
dr---
d,<

= o (82)

which is the condition that the trajectory is geodtsic..

If the Gaussian mrvature  (77) whid is uniquely defimd  by the parameters of the
dyllalllical systelll  (lij, is ne@ivt’:

C;<o (83)
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then the tmjedories  of imrtial  moti(ms  of the system origillatwl at dose,  but different
pc)ints of the c.odiguration  sl~:im diverge? expcmelltially  froln (’ach other,  and the 111o-
ticm bmmmm lllll]rt?[li(.t:il~le  :Lnd  stochastic. %mt>  examl)les  of orl~ital  instability in in-
cwtial,potmtid  and general  motions as well as otll(:r  tylx:s  of instability are disc. usst?d l~y
M. Zak [11].

Turning back to the motion of th? partich?  h4 (m a smooth”  psc?udosphmw  (Fig. 2),
let us depart from il~ertial  moti(ms  and intr(xluce  a force F :icting on this partick,  For
mnimrtial  moti(ms  (F # O) the? trajectories of the lmrtic.le  will not h gt?ock?sim,  whilt? the
rat e of their deviation from gmd(?sics is cl] a.ract eri zed hy th(> g(>mlmic  curvature x. It is
obvicms that this curvature must depend cm the fcm.es  F:

L. Synge  (4) has shown that

x == x(F) (84)

f th(? force F is potc?ntial:

F=– Vn (85)

where n is the potmtial  t?mrgy,  then the cxmditioll  (83) is rt?plactd  hy the f(hwing:

(86)

Here  I’$j are defined  by Eqs,  (78), and ?L’ axe the cmtravariallt  compommts of the unit
mrmal n to the trajt?c.tory.

The geodesid  curvature x in (86) cal] be expressed via tilt? potcmtial  force F:

Fon v n .I1— =-. —
x  =  2 W 2W

(87)

As follows from (86) and (87), the c.cmditim (86) reduces to (83) if F = O.

Suppose for example, that the following elastic  form:

F = –tizf, t?2 == (:071Si (88)

proportional to the normal deviation ~ from the geodesic trajectory is appliecl  to the
particle M moving on the smooth pseudosphert?. If tile initial  vc!]ocity  is directed along me
of the mericliam  (whidl are all gc?odesic.  s), the mperturlwd  motion will be im?rtial, and
its trajedory  will coincide  with this mt?ridian  sine.tl them c =: O, and therefore, F = O. h
order to verify the orljital stal~ility of this ]llotiol~, let us turli tt) tile mitmion (38). Since:

(89)
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(90)

whine

w  =  ;mv; (91)

As ill the case of inertial  moti(ms,  the imquality:

ct’2 < –2WG0 (92)

leads to mlprdidald(?  (stcwhastic)  motions which :irc? c:llala(:tt?liz[?[l  I}y:

For pure imrtial  mt)tiom (a = O), Eq. (93) reduces  to Eq. (64).

After the dismvc?ry  of dmos, the stochastic motions which arc? generated hy the ixl-
stability and are dmacteriz~?d by p(wi tive Lyapm(w  expmc?nts,  arc called  chaot it.. Hence,
the imqualitim  (83) and (86) can he ass(xiatc?d  with c.rit~?ria of cl]zi(w: if the left hand part
in (86) is bounded  away from z(?I() by a negative mmber -II in all tht? Configuration  space
where  the motion  Call occur,  them the? motion will lx? dmotic , aIld its positive Lyapumv
expcmmt will be:

G>lp (93)

Unfortunately, this criterion is txm “strong” to be of practical significance:  it is sdficit?nt,
but not ncxwswwy.  Ind(?ecl,  this c.riteri(m  assumes that not only glol~a.1,  but also the local
Lyapmmv exponents are positiw? in any p(~illt of the cmdlguration space, At the same time,
for many chaotic motions,  local Lyapumv  exponents in cmt ail] d(mmim of the mdlguratim
spare? am all mgat  ive, c)r zero,  although s(Mne  of t 1] e glolml  exp (mmts are still pc)sit ive.

Following .1. L. Sy1~ge[4],  the results  for the orl)itd instability of inertial  and potmtial
motions  for a system of material points call lx? generalized to arbitray  motions [11].

Thus, them are some domains of dymmic.al paramc?ters  where  the motion cannot be
predicted h-aust?  of imtal~ilitly  of the s(dutiom to the c.orresp(mding  governing equations.
How mm it be intt?rpretecl”?  Dot?s it mean that the Newton’s laws are not adequate’? Or is
there somdhing  wrong with our mathemat i d models’?  In oxdm to answer these questions,
we will discuss smm?  gt?mral  aspt?c.ts  of the c(mc.ept  of instability, and in particular, a degree
to which it is an imw;’ial]t  of motion. We will demonstrate that instability is m attribute of
a lll:~tllt’lll:itic::il  mdc?l  rather  tllall  physid phellolm?non, that it depends upon the frame
of rcfc?rmc.e,  upon the class of fund ims ill whidl  the motion is described, md upcm the
way in which the distantx?s  betwe(?n  the basic and perturlx?cl  solutions is dt?fimd.
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Let us turn to orl~ital  imtaljility  discussed above. Th6? metric c)f cmfigurat  ion space
where  the fil~ite-cl(?gree-  c)f-frt?eclc)l~l  dynamical systmn  with N gellrr;ilizecl  mordimtes  q’ (i =
1,2..  . N) is represmltd  by a unit-mass l~artid(?, \vas defimd  Ly Eqs.  (75) aml (76). Now
them are at least two possilde  ways to ddh(?  the distance Ix’twt(w the basic and disturld
trajectories. Following SyIlgc~ [4], we will c.onsid~:r  the distallcc~ in kim?matid  and in
killelll:itico-statistic?:il  st?nse, In the first case  the cc)rrc?sl]c)ll(lil)~;  lx)ints on the trajectories
are those for which tim(? t has the same value. h the Sf’(’.oll(l  L:aSe  the cc)rrt?sl)oll~lt?llc:e
between pc)ints on the l~asic trajectcmy  C and a disturlml  traj(’c.t(my  C* is t?stablishd  by
the condition  that P (a point on C) shoul(l  be th(: foot of th(> gwxh?sic  perpendicular  lt?t
fall from Z’* (a point m C*) (m C, i.e., ht?re evt?ry point of the disturlx?d curve is adjaumt
to the udisturl~c?d  curve (rc?gaxdlt?ss  of tht: position of the Illt)villg  particle at the? instant
t). As sl)own by Synge,  both ddil~ition  of stability are invariant  with respm.t  to coordinate
tr:lllsfc)rlll:itioxls,  and in both cases  th~? stal~ility  ilnplim  tll:it the c:orrt?sl>c)llclillg  distance
bdwcxm the mmv?s  C ald C’* remains permanently small.

It is obvicms that stability in tht? liintullatic.al  semt? implies stdility  in the kimmmtico-
statid  scmsc?,  but the: txmv(?rse  is not tru(:. Ind(?(’cl,  Comsid(’r  the motion of a partidt? of
unit mass on a plain? under  tht? idlumc.t?  of a form:  system d(?livahh?  from a potential:

Writing down the equations of mot i(m and solving them, we get:

y = c Sin (t -1- 0)

where  A, B, C and D arc? constants  of integration.

Let the unclisturlx?(l  motion Ije:

(94)

(95)

(96)

(97)

?J=O (98)

The mc)tion  is ch?arly unstable in the kimmmtid  sc?nse. How(wcr,  from tht? viewpoint of
stability in the killc~l:~aticc)-st:~tical  stmst?, the distance h% wtx?l  k c.orrt:sl}c)llclil~g  points is:

PP*=y~=C’Sill(t+D) (99)

remains  permanently  small if C is small. H(mct?j th~m is stability in the kimmmtico-  statical
Sellsc?.

Thus, the same moti(m  can he stable  ill (me s(me, and unstable in mother, deptmcling
upon the way in which tht? distance lmtwt’m  the trajectories is dt?fht?d.
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It S11OU1CI  be notic.d  that in lx)th cases,  tile mot  ric c)f configuration space  was the same
(see Eqs. (75) and (76). HOWL’VeI’ , as shown by Sy:lg(? [4], for c.(mservative  systems, one
cm introduce  a configuration  spaw? with mother  Illetric.

!7111>1 = (E -  n)~,,t,, (loo)

whine CV,,l,,  am c’xprcssed  by 13q. (75), and E is tht total energy.

The system (If motion trajectorit?s  here  cxmsists  of [ill the gadt?sics  of the manifold.
The correslJc)I]clf?l~c(?  htweell points on the trajedories  is fixtxl l~y the c,cmdition  that the
am O* I’* should he equal to the? am C)P, wht?re  O and o* are arl~itraxily  seledd  origim
cm the basic trajectory and any disturbt?d  (m?,  reslx?c. tively.

A S  ShOWII by Synge,  the prol~hn  of sta~~ility l~(~r~?  (wlli~ll  is ~all~~d  stal~ility  ill tlM’
action scmc) is that of the mmt?rgence of gtvdesics in Rimmmian  spare. If two geodesics
pass through adj ac.mt points ill nearly parallel dir(x:t  i(ms, thf? distmc.t?  lx?twtxm  pc)ints  on
tlm g.md(?sic.s  equidistant fr(ml the rt?spectiv(?  initial points is t’ithrr pcmmmmtly  small or
mt, If not, th~?m is instability. It appt?ars  that stability ill tile action smse may not k
equivalt?nt to stability in the killt?lll:ttico-st:itic.al  st?llse  for distallc.cs  which change tile total
t?mrgy E.

Turning to the example, Eq. (94), h?t us take tht? il]itial lx>int  O at the origin of
, .

coordinates and tht? mltml  point O* m the y axis. ~ ‘ht?n the dist url):inm bcillg idhitesimal,
the (action) distance lxtwt?en L..c)rres1lc)ll[lillg  points is:

F’* = (E- n)112 y = 2-lfz(t + 1) C Sill (i + D) (101)

Hence,  the motion is unstable in the action st?nse.

Dymimical  instal)ility  depends not only upol]  the mt?tric  in which the distances h-
t wmm trajdories  am defhed,  Lut also upon the frame of refertmce  in which the motion is
described.

Fc)r instance, as noticed hy Arnold [1], an inviscid  stati(mary  flow with a smooth
velocity field (in Eukian  representation):

v= =  Asinz+C’c.osy,  vy =  Bsillx+A~os~,  V: = CSiI~Y+~COSX (102)

has dmotic  trajt?ctori~?s  x(t), y(t), z(t) of fluid particlt?s  (Lagrmgim  tuxl>ulemm)  due to
mgat  ive curvature c)f the c.odiguration  slxw.e  which is obt air)ed  as a fillite-clilllexlsic)ll:il
approximation of a txmtimlum. TllILs,  the same moticm is stal)le  in the eulerian  represm~-
tation, but is unstable in the Lagrangiall one.

h orckx  to dcmomtrate  the instability delmndt?l~c:e  upon the t:lass  of functions in which
the motion  is Considered,  start with an examl]le  of a vt?rtic.al  idt?ally  flexible imxtcmsihlt?
string with a free lower end susptmdecl  ill a gravity field. Th{? g(wc?rning  equation for small
transverse  moti(m of the string  is:

(32X T d2x
W+––T=O (103)
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It has the following clmmtt?ristic  speeds  of the transverse wavrs propagaticm:
r

T= Oat S=l (105)

whmx: 1 is the lt?@l of the string,  the characteristic speeds  (104) vanish too at S = 1, and
tl~mwfore,  Eq. (103) degmmate  from l~yperlxdic  into parabolic type at the very el~d of the
string.

Suppose that an isolated transverse wave c)f small aml)litude was generated at the
point of suspension. Tile sped of propagat icm of t l~e lewling flol~t  of the transverse wave
will h smallm than the speed  of the trailing frcmt Ix?c:ause tllc?  t(?llsi(m clecr(?ases  from the
point of suspc?mim to tht; frt?e t?ncl. H(?nce,  the kmp;th  of the? above wavt? will be decreasing
and in somt?  cases  will tend to zero. t h(?n ac.c.ordil  lg to the law of txmsf?rvat  ion of energy,
the specific kinetic em?rgy p(?r unit of h?ngth will ttmcl  to infinity  producing a map (snap
of a whip).

As shown by M. Zak [11], a formal matlmmitical  s(dutioll  to Eq. (103) is stable in
the? opcm  interval  (which clot’s  nc)t include the t?llcl):

but it is umtahle  in tile t’.hwt?d intf?rvd:

Howt?ver,  the. stal~le solution cloes  not clescrihe  the snap of tllc whip, while  the umtahle
solution chx?s!

Thus, the properties of solutions to clifferenti  al equations SUC1l  as existtmcw,  unique-
ness and stability, have a mathematical meaning only if they am r~?ferrecl  to a certain
class of functions, Most c)f tht? results concerning the prcqmt  it’s of solutions to clifferent  ial
equations require cliffertmtiability  (up to a Cert,aill  order) c)f t lle flmct ions describing the
scduticms. Howt?ver,  th(? mathematical rt?strict  iol]s imposed upt)ll the class of functions
which guarantee the existence of m uniclue ancl staljle scdutioll, do mt necessarily leacl to
the best represtmtaticm  of the mmesponding  physi  cd l)llc?xlc)lll(’llc)ll. Indeed,  turning  again
to Eq. (103), cme notices that the uniclue and staljle solution cloes  not clmcrilm  a cum-
mdat  icm effw.t (a snap of a whip) which is WC?ll pmnom  cccl i] I expt?riments.  At the same
time, all mlstable solution in a dosed  interval gives a qualitative descripticm  C)f this effect.
Htmm,  pure matht?matical  mstric.ticms  imlmecl  upon th~? soluticms  are nc)t always c.omis-
tcmt, the long- tt?rm instability in classical clynamic.s  clisc.usswl  above, can be intcqm%ed
as a discrepancy lx?tw(?m these mathematical restricti(ms  and physid  reality. This means
that lllllJrt?cti~:tal~ilit  y in classical clymmir.s  is a price  paid for mathematical “ comenicmc.e’)
in dealing with dynamical m(dt?ls. Therefore, the c.oxlc.t?pt  of ~~lll]recli(:tal~ility  in dynamics
shcmlcl h put as lllll]r(?(lict:il~ility in a selected  dtiss  c)f functions, or in a selcdecl metrics
of C.onfigu:ati(m  space, or in a sdec:tecl  fralne of rt’ferenm.
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In this ammcticm  om should notice that th(? governing  equations c)f classical dymmics,
and in particular, of c.mtimmus  systems, in additi(m  to Newton)s  laws, are based  upm a
pure matlmmi,titvd  assul)ll]tiol]  that all tile fmlc.timw  dt:scxil~ill~;  tile system motitms,  must
be diffmxmtiable  “as many tim(?s  as m?mssary”. 1311t since this assumption is not always
mmsistcmt  with the physical nature  of motions , SUC’11  all illcolwistcllcy leads to instability
(ill the class of sm(x)th flmctiom)  of tht? governing equati(ms[ll].

Hmlce,  the (m:uxrt?l~ce  of chaos c)r turl~deme  in descril~tiol~  of l~~edlanid  motions
means only that th(?sc motions mmot he propmly  descrihc?cl  by sm(mth  functions if the
scale of obscmmtlolls  is l imi ted .  These ar.gumc?nts  can h? linlud to Godc?l’s  inmmplde-
m?ss tlmorem[3],  md the? Ridmdscm)s[7]  proof that the tlle(my  of elemtmtmy  functions in
dassicd amdysis  is llllclt?~:icl:il~lt’.

Thus, since imtal~ility  is mt an invariant  of IIloti(ms, the f(dl(nvillg  qumtion cm be
posd:  is it possible to find sudl a new (t?ldarfy?d)  class of functions, or a n(?w metric of
txmfigurati(m  space, or a new franl(? of rt?f(?r(>llc.t~  ill ordt?r  to eliminate  instability? Actually
such a pcxssibilit  y would lt?ad  to differeut  reprmtul  t,at  ive l~aralll(:t  c?rs descxibillg  the salne
mot ion in’ such a way that small unmrt  aint ies in ext tmml  f( mm caus(?  small changes  of these
parameters. For t?xamplt?, in turbulent  and chot ic mot ions, mt?m veloc.it  it?s, Reynolds
strcxsm,  ancl powm sp?dra,  represent “St al)le” pammc?tt!rs , althmgh  classical governing
equatiom  mither  are exl)lic.i  tly expressed via these paranwt  c?rs, nor miqut?ly dt?fim them.

The first step tc)ward  the enlarging of the class c)f ful~ctiolls  for modeling turl~dmce
was made hy O. Reyn(dcls (1895) [6] who demm]pos(?d  the vt>locity  field into the mean and
pulsating c.ompon(?nts,  WI(1 ac.tudly introduced a multivalud  ~~t>l(x:ity  field. Howtwer,  this
demmposi  tion brought mw udmowm  without ad(lit iomd govexllillg  equations, and that
created a “ C:lOSUXW’)  “problem. h 1986 Zak[l  I] has shovm tluit thi Reymdds equations
can be obtaim?d  by referring  th(? Navit?r-Stokes  equaticms  to a rapidly oscillating frame of
reference,  while  the Reynolds strt?sses  represent  t lie. cod rilmt i( m of inertia forces. From
this viewpoint the “closure” has the same status as “proof”  of Euclid’s  paralk?l postulate,
since  the moticm of the. frame  of reference  call be chosen arbitrarily. In other words,  the
‘) C1OSUIW” of Reydds equatiom  rc?presmts  a case of undecidahilit y in classical mec.hanim.
However, lmsecl  upon the illt(?rl~rt;ttitioll  of the Rt!ynolds  stresses as inertia  forms, it is
reasonable to dloose  the moti(m  of the frame of reft?rt?nm  sudl that the inertia  forces
eliminate. the origimd imitability. h c)ther  w(mds,  the edaxy;ed  class of fmc.tiom  should
be sdectecl such that the solution to the original probleln in that class of fundicms  will
rmt possess an exponential smsitivity  to changes in initial  conditions. This stabilizaticm
principle has been formulated aml applied to c.hhti(:  and turb~dent  motions by Zak [1 1]. As
shc)wn there, the motions which are dmot ic (or turbulent) in tlm original frame of reference
Can he represcmttd  as a sum of the “mean” motion an(l rapid fl~lduatiom,  while both
components  are uniquely defhecl. It is worth emplmsiziqq  that the amplitude of velocity
fluctuation is proportional to the degree.  of the original inst ahilit y, and therefore, the rapid
fluduatiom  can be associatt?d  with the measure oft he unce.rtaint  y in the d(?sc.ripticm  of the
moticm. It should h? mt im?d that lmt h “ m(?an” and “ fluct mat ion” c.ompcments  representing
the originally Chaotic  motion are stal)le,  i.e., they are not stmsitive  to Changes  of initial



Collcliticms,  and are fully reprc)duciljlc?.

7. CHAOS IN FAST OSCILLATING FRAME OF REFERENCE

I

Formally, chaos is cared by instability of tr:ijdorirs  ((ml~ital  imtal)ility).  If the ve-
locity of a partick?  is dmompwx?d  as ; = v; ,(F is the unit v(w.tor  along the trajt:c.tmy),
then orbital instaljilities  are idtmtifk?d  with imtaljiliti(?s  of 7’. 111 other words, the orbital
instability leads (rely to rdistrihuticms  of the tmcrgy  lx>twt’m diftmx?nt  c.omdimtes,  and
it cm be assc)c:iatecl  with m igmrable  varial~le  which d(x>s  not c(mtrilmte  into kint’tic el~-
ergy. Thm?fcm,  m unlimitt?(l growth of this variable d(ws m)t violate the Imuncledmss
c)f energy. That is wily the orbital instability m[iy not lwid to classical attractc)rs  and
chaos call Clllt?xgc  . h dissipative systems the persisting instal )ility cm he “1-dmcecl”  l~y
dissipative forms in a sense  thzit expcmmtidly  divc?rsing  trajectorim  are locked  up within
a cxmt ratting l~hast?-spwx:  volwm,  and this leads t () cllaot  ic. attract ors.  In both c.omcrva-
tive and dissipative systems, t?xpom?ntid  div(?rgcm(w of trajectories within a mmtant  cm a
c.mltracting v(dum(?  camx?s tll(?ir mixillgl so that tilt? motion”  c.allllot  lx? traced  unless the
initial conditions  are km)wn  to idhite  accuracy. It means  that ix~ c.mfigurat  ion spwx?,
two diffcmmt trajc?c.tories  which may he initially illclistillg~tisll:il~lf:  (bee.aus; of finite  sde
of obw?rvat  ion), div(?rgt?  exp(mmt  idly, so t lla.t  a ‘) 1A” t mjt?ct ory can fill up all t 11(? spacing
ht wtxm these  t?xp(m(~nti:dly  div(?rging  trajectories. h other w(ds,  in the. domain of ex-
pcmmtial imt al~ility,  (?ac.h tmjt?c.tory  “multiplies”, and tllc?refort?, the predicted trajectory
lmmllle  mdt  ivdm?d, so the v~!locit  ies cm:  1x: considered ;IS r:u] doll) variabh?s:

(106)

where  ~ and & for a fixed t arc a function and a point on a prolxhility  space,  r(?spec.tively.
Ld m r{?fer the original t?qmitims of motions to a mm-inertial frame  of rc?fert?nm which
rapidly oscillate? with rc?spt?d  to the? origiml  im?rtial  frame  of rt:fc?rt?nc.e.  Then the abscdute
vt?locity  q cm be dcccmposd  intc)  tht’ dative velocity ~] and the transport ve l o c i ty
q~ = 2(jqo):

1
w >> --7-

(107)

(108)
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h othcw  words,  a fast oscillating velocity practically does  Ilot dlange  tile displace-
lmmt s .

cd
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~2(0) sinwtd  = O, ~z(o)c.oswt(lt  = o

0 0

i: = (ljiij +  L!j,,ti]i’”,  +lj,,,ZJx7’i,i  =  1,2,  “  “ “?l

(110)

(111)

(112)

where  ~ i and ~ are means and d(mhle-  c(me.lat  ions of xi as random variables, respec-
tively.

Actually the transition from (111 ) to (1 12) is i[hmtical  to th(? Reynolds trallsfc)rll~atic)l~:
inckxcl,  Leing applic?d  to the Navier-St  ekes t?quati(ms , it leads to the Reymlds equations,
and therefore,  tht? last terms in (112) (which is a c.(mtril)uti(m  of inertial  forces due to fast
osc.illatiom  c)f the frame  of reference) can be identified with the Reynolds stresses. From a
mathematical vi(?wpoint,  this tramf(umm.t  ion is int erpretablt?  as m enlarging  the class of
smooth fund ions to mult ivalud ones. haled, as follows from (108), for my arbitrarily
small interval At, them always c?xists such a large freqmmcy  w > At/2m  that within this
interval  the vdoci  t y ~ rims t hr(mgh all its valut?s , and actually the velocity field becomes
multivalms.
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The most significant  advantage of the Reynolds-type equ:itifms (112) is that they are
explicitly expressed via the physidly reproducible  paranwters  d“-”, xi ~J which describe, for
instance, a mean vehw.ity profik?  in turhultmt  motims,  (m a  lx)wc?r spmtrum of chaotic
attractors. However, as a prim fox that, thes(?  equatimw  requirt>  a c:hmm  since the mmlx?r
of u:lknowns in tllmc? is l:Lrgm  than the nmlllx’r  of tquatiolls. .4 (’tually  the closure problmn
has existed for almwt  hundr~?d  yc?ars  since the R~yllolds  wlu:iti(ms wt?re derived. II] the
mxt smticms, lxwd upon the stabilizatifm  l)rim:iplt’  intr(xluctd l~y Zak,  M. [1 I] this proldtml
will be discussd.

I SomC  commmts  sh(mld lx? made txmctvming t 11(? Rqmolds  t r:ixlsfc)rl~):~tic)l:  of the La-
grange equation (59). Th(?ir ~’xplic.it  forlll:

(113)

in gt?mral,  is mmlinmr  with rt?spt?c.t  to both the cxxmdilmtrs  q“ and the velocities jr since

I
Howt?ver,  as follows from Eqs. (107), th(? fluctuations of the c.oordidm  are much

smaller than tht? fluctuations of the vt?loc.itics:

I

ad therefore, thc?y mm l~e igliored.

Consequently, after the Reynolds transformation, Eq. (113) are pr(?smtd  ix~ the form:

where  ij’- =
.—. _—“ 1)1 ~ ~~ ifj tll~ av~~aged l> IO(lllt’t

q[ is the mean value of the mmxlinate  qr, zmcl q ]
of the flue.tuatim velocities, and the Reynolds form Q[i) rqmm?nts the cmtrilmtim  of
inertia caused  by the transport motion of the fran le of refermct?.

Actually  the tr:il~sforl~l:ttiol~”  fr(m: (113) to (116) can
idmduc.ecl  Reynolds c.ol~diti(ms:

M based upcm the axiomatically

z + a’, t~tc. (117)
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.

i.e., when the c.odigur:tt  ion space  is Euc.lidt?an,

Q;i) ~ () (119)

Q’(T +  v’) = Q ’ ( T ) +  Q~i),  Q~i,  = [Qr(~  +  ~’) - Q’(v)] (120)

om obtains instead of Eq. (1 16):

8. STABILIZATION PRINCIPLE

The main purpose of the tramitioll  froln th(? form (101) to the form (102) is to change
the represmtative  parameters clesc.ril~ing  the motion ill such a way that they l]emme phys-
ically reproducible,  i.e. , mathematically stablt?. Ht?nce,  the nmt logical step is to utilize
tile extra-  varialdm, i.e., the Reylmlds Strt?sses, for C?liminatioll  of tllec)rigill:il illstal~ility.
bother words, one can seek sud an aclclitic)l~al rc~latic)llsllil]s:

,..
y2(Lc*xJ,  i’, z~,’ ””) = o (122)

which makes the system (1 12), (122) stal)le. (Ihvi(msly,  in this pcmdmss  of the problem,
the solution to the systcm (112), (122) is l~ot unique: the? system  can be cmmtablizd  to
any degrm, while t?ach of these  stablt? solutions will have l]llysiml  meaning.  But for the
l~est  sol~ltiOl~  om? has to minimizt? tht? ux~c.extainti~?s  rt?pres(?ntwl  by the ReyImlcls  strt?ssc?s,
ancl therefcm?,  tht? system should he brought to the hmndary  of imt abilit y. Since the
orl~it  al imt abili t y musing  chaos is dmrac.t  erizt?d  by posit ivt? Lyiil)uImv  expommts  At, One
should selmt  th(? Reynolds  strt?sses  in (1 12) such that



without clmllg(,s:

J; (124)

Clearly, tllos(?  colnlx)l~c?nts  of the Reynolds stlc?sst?s  which (lo Ilot  affect the Lyapumv
expcmemts,  Inust be ol~~itted,  In g(?n(?ral,  the dutiol~ tc) equations (102)-(105) will evel~tu-
ally approad~  a set of p(?riodic  attractors which ‘)rel)lac.es”  the chaotic attractor c)f equation
(101 ). However one sh(mld mllsick?r  these  sets not as an iil]~~rc)xil~~[~tiol~  to the original
dmotic  attrador,  but rather as a diff(?xtmt  way of IIlatllt?matic:al  representation  of the same
physical phemm?nm. This rt:l)rest?llt:itiL)ll  is plovidecl by a new frame c)f reference  whose
oscillations are couph?cl with tile dynamicxil  variables such that thf? inc?rtia forces  (i.e. the
Reynolds, stress~?s)  g(?n(?ratd  by transport  motiol) , eliminate tile original instability. In
other words, the Il(?w fraln(? of rt’ftmmcw  pr(wid(?s  tile bc?st “view” of the motion.

The cl~~coll~l]c)sitioll  (102) applit?d  to (?qu:itim  (101), gelleratc?s  l~ot cmly pair c.orrela-
.,

tiom  x’x~, but also cxmdatims  of highm order,  such as tripl~? c(m(?latiom x’x~zk,  quadrup-
le mrmlatiom  ~~~~~k~~,  t?tc.. Inde(?cl,  multiplying t?quati(m  ( 101) by Xk and averaging
and Combining  th(? r(?su], ts, one (Jl)t aim tile g(werl  ting equations for the pair correlations
~izk;

——
whidl  Collt ain nim addit  icmal t xiple mrrelat i(ms x 1 ~1 x k.

Now the applic.atioll  of the staljilizatiol~  principle will lead tc) the system  (112)-(125)-—
which wil l  define  Zt, z: ~~ an(l those  components of triple  mrrec.tiolls  ~:~~~~1~  which af-
fmt the Lyapunov  exponents in equati(ms  (123) ~incl  (124). Hence,  the solutions to the
systems (1 12)-(124) and (1 12)-(125) can h rt?garded as the first ad the seccmd  approx-
imaticm, resped  ivt?l y, to the pro blmn. Theoret”idly  speaking, by comiclering next order
al>l>rc)xilll:itic)lls,  a mmlplete  probal~ilistic  structur(’  of the solutic)n  to equation (111) Cm
be rcq>roclucc?d.

Applications of the stabilization princil)le  is significantly simplified for those systems
whose hmdaries  of instability can h? fommlat  etl am.lyt  id y. FOX some cases  of con-
servat  ive c:llaos  and simlJe  t urbultwt flows new ml )resent  at ions of solutiom  wt?re given by
Zak, M.[11].

yJ
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h the mxt sc?dim we will demonstrate application of tl~t stabilization prim:il~le  to
som(? dissilmtive  chaotic syst[?ms  by nmnerical  elin~inatim  of p(witivc?  local Ly:il)umv  ex-
p[)lmt  s.

9. APPLICATION OF THE STABILIZATION PRINCIPLE TO REPRE-
SENTATION OF CHAOS

a. Inertial Motions

h order to clarify the main id(?a of the approach, let us turn to the indid motion of
a particle M of unit mass in a smooth pseudospherc S having a c(mstant negative curvatim
(64). As shown there, the orbital instability, and therefore, tllc chaotic  lx?havior of the
particle M can lx? diminated  by the? t?lastic  force (S8).

F := –ck2f ,CY2 = (X)llst.  > –2W’G,  G < 0 (126)

propcmt  icmal to the normal dt?viat i(m f fr(m] the ge{ d{?sic t rajw.t  ory which is applied to the
particle M, But such a force cm] appe:ir  as an imrtial  force if tll(:  moti(m  of the particle M
is referred  to all appr(q>ride mm-im?rtid system of coordimtes.

Indeed, so far this moti(m  was rt?ft?rml  to all int?rtial  system of mmdimtes  q], q2,
whmw  q] is the c(mdimit(? al(mg the gtwdt!sic mwidians , mcl q~ is the c.cmdimte  along
the parallels. Lc?t  us introduce ~lt?w  a fram? of refert?nc.e  which rotates clout the axis of
symmetry c)f the pst?udosphere  with the r(?adily  oscillatory trmsport  v(?hx.ity:

so  that  the Components  of the rt?sultant  vf!l(x:ity  along tht? Int’riclialls  and Ilarallels are,
rt:spec.tivt?ly:

v] = (j], v~ = (jz + 2:0 C[)s Wt (128)

sinm Eq. (128) has tht? same structure as E(I. (107), the Lagr:mgi(m  of the motion of
the particle M rt?lative  to the new (mm-im?rtid)  frmm? of x(?fer(?nce  Cm lM written  in the
following f(mn: (see Eq. 72):

% far the transport velocity ~0 was mt specified, and therefore, the Lagrangim  (129)
has the same dem(?nt of arbitrariness as tht? g(werning  equations (112) descriljing  chaotic
motiom.

Now, based up(m the stabilization prim.iple,  we are going to specify the transport
motion in such a way tlhat the origimil  orl~it:il  ixlstability  of the inertial  motion of the
particle M is eliminated. Turning to tl~t?  cxmclitim (90), one? ol~taim:
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where w = ~v~ is tlm kim?tic t?m>rgy of the paxtidt?. This mmditim  can l~e satisfit?d  if
the tmmspcmt  vd(xity ;o is coupl(?d  with the: mmmal deviati(m  c as following:

IT~–2&cIoq, .2 _—. — 60 — –WG’oq;2
Go

(131)

As follows from Eq. (93), in this limit case  the Lyapumw c?xptm(?nt of the dative motion
ill the new (non-imvtial  ) frame  of rt?ftmmm  will lx I zt?ro:

(132)

and the trajt?c.tcmies  of pc?rturl~d  motions do not fliverge. Tlw normal deviation from the
trajectory of tht? relative moti(m  (in cast? of Z(?XO  lx?rtu;’l~c?d vd(wity  {0) can lm written  ill
the following form:

q2 r q: =  C(mst , q; = q~(t = o) (133)

which means  that in t 11(? Il(?w frame of r(?f(?xfvlct:  an i Ili t id t’rror  CO (1( m not grow - it remains
comt  ant. The Ielat ive mot ion ahmg the t rajed ory is dt?sc.rihd  Ly the diffc?rmt  id equation
following from the? Lagrallgiml  (120) whidl  takc?s tile following forl~l  (aftc?r  substituting Eq.
(131).

1
L  =  ~; –  —-c--2 GCZ9’ qz –  WC~oq:

Go
(134)

i.e., —-
2J–G’O  ~,-2/=L’191j2 = ojl –

G()
(135)

B u t  t h e  original (mlperturbt?d)  motion w:is directtd  al(mg tht? m(?ridiam,  i.e., ~ - 0.
Cmseqmmtly,

. . . q]  = 0, til = U(, = C(mst (136)

i.e.,  tlm dative motion along tht: trajectory  is txmstimt.

However, this vdmit y is diffm?nt  fr(m the original  v(~l(w.it  y V.. hdec?d, the total
kinetic emrgy  of the particle now consists  of the kinetic  mt?rgy  of the moticm along the
trajedcmy,  and the kinetic  energy  of trmsverst?  flllctuations

1): –2
~ + :(d)z I Go I

T=2

I Wllmcx?:

r-———. —
Z() = ‘V(J l–(qylGol<v(J
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(?xpr(?sst?d  hy Eq. (131), i.e.

(137)

(138)
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Thus, the original unstable (chaotic.) motion is d(?c(m~p(wd  into the m?an mc)tion
along the trajectory q~ = mmst  with the? constant  vt’hx:ity  (129), and transverse fluctuations
wlmc kimtic.  energy  is proportiomd  to the original  error q) all[l to tl~~ degree  Of illstal)ility

I G’O [. It is important to c?mphasim  that Loth colllpon(?nts  of the motion are stable  in a
sense  that initial  mror ill qz at t = O does not gro]v , and initial  mmM in q] at t = O grows
linearly with time.

Obviously the m?an, or averaged motion rt?l]xt?sellts  a Illacr(wcf)pic  view on the particle
Imhavior  extracted from the microscopic  worlcl,  while th(:  im?vtmibility  of this motion is
manifested by thti loss of the initial  kim%ic energy  to micmmxq~ic  flue.tuaticms.

It shcmld  be c?mphasizd that the decompc)siti(m  of the motion into regular and fludu-
aticm mmpom?nts was tmfortx?d  by the stabilizaticm  principh?  as :i supplement to hTewtonian
mm.hmim (SCW Eq. (131)), while without this principle any tlmmy  where  dynamical insta-
bility call c)ccm is illc(mpk?te.

l). Potential Motions

Bax?d upon Eqs.  (116), for potel~tial  moti(ms,  the gpve~l~i]lg cquatims  can k w~ittcm
in the following form:

On
~(’ +  r;btj~qb  = ‘jj~ + ‘1~~) (139)

(140)

where  n is the pot t?nt  id energy  of the dynamical system, and Q?])  are tll~’ inertia  forces  (or
the “ Reynolds  stresses” caused  by the rapidly osc:i]  lating  tramp(d  motion of the frame of
ref(?rcmc.c?.

For simplic.it  y, we will cmfim ourselves hy a t wo-clilll(?llsiol~al  dymmical  system as-
suming that o = 1, 2.

Following the same strategy as those applied to imrtial  moti(ms,  let us couple the
imrtia  fcmes with tht? parameters of tht? dynamical system in such a way that the c)rigimd
orbital instability (if it occurs)  is elimimitecl.  For that purpos(!
forces in the form:

, first we will represent  this

Orl(l)
Q~i) = –  ~iF (141)

whc?re  n(l) is a fictitious potential t?nergy  equivalent to the kint?tic energy  of the fluctuations.
Thcm,  turning to the criteria of lod orbital stal)ility  (86), omt finds this potential emrgy
n(l),  and c.omc?qmmtly,  the inertia  f(mc.t?s  Q~a) from the Coll(liti(m t~lat origill~  local Orl~ital
instability is dimimtt?d:

G+3
[ 1 -[V(n + n(a)) ● n 2 + 1 02(n  + n(l))— —  — - - -  . ~$j~n + ‘](:))——. — .—

2 W 2W i3q~~~~ 8qk 1 nin] = O i,j = 1,2.

(142)



Here  W, G, aml 17$j are defined  by the parametm  of th(? dymmic.al system  (1 lb) via
Eqs.  (75), (77) ad (78), respectively, and ni are tile c.f)ntr:iv:iri:int  compommts of the unit
mrmal n to tht? trajedoxy of the lmsic func. ti(m.

Eq. (142) contains  only one? ud:l]owI~  n(i) which call lx? founfl froll~ it, a)ld that will
define  the inertia  f(mcm,  (w tht? “R~?ymdds stresses” (141)

It shdcl  be m)ticc?d  that unlike the case  of the in(:rtial  lnf)tion c)f a particle cm a
psmdosphcm,  here? the G oeussian  curvat um G , as W(?ll  iiS tll(’  gradients C)f the potential
Cm?rgy  n,  arc Ilot Collstallts , :u](I  ~~)l~sc>q~lel~tly,  tht? l(x.d Lyal)ul~(w (?xpol~ents  m a y  bc
different  from tl~t?gl(]l~:ilc)l~es.  This mealw that th(? r.ol~diti[)ll  (142) elin~inate slcxalpositive
exp[)mmts,  ad thc?rt?forc?, the solution to Eqs. (139) and (142) r~q]r~w?nts an cm?r stahilizecl
mot ion. Ohviousl y, diminat  ion of only glol)al  posit ivt? L y apum  JV exp(mcmts  wcmld lead to
soluticn]s  with less unc.t?rtaintitw  whilt?  Mme of local expmlmlts  in certain  domains of the
phase  spact? may t?vt?n  remail] p(witive. Howc?ver,  the strat(?gy for elimination of global
positive expcmmts is more  sophisticated, and it txin be implemented only numerically.

It is worth mting  that Eq. (142) is simplified to the following:

if the basic motion  is dlaacterized  by z(?rc)  lx)tf?ntial forces

On—-./jql = o

(143)

(144)

It may occur, fox imtm)ce,  when the dymimical system is in a r(’lative equilibrium with
rtwpmt  to a moving frame.

Thus, as in the previcms  case  of imrtial  motion of a particle, here  the Lagrange
equations (139) are supplemmted  by t hc? addit  iol lal cxmst  raillt (142 ) followil]g from the
stabilizaticm  principle. It is important to emphasize? that this cxmstraint  is effidive only
in case of orbital imtahility  of Eq. (139); t)therwist?  it is satisfitd  automatically.

As an illustration to the mse of potential system, w(? will consider the motion of a
charged particle (charge –e, mass m) in a uniform magnt?tic.  fit?ld,  B in the vicinity of a
metallic sphere  (radius a) biased to a potential Vtj > 0:

mv=-ev  xB-i-evv (145)

where v = ~ is the veloc:it  y of the particle, and v = VO (a/p) is the c+x.trical  pc)telltial  due
to the sph(?le.
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(146)

(147)

Whcm

‘2
I.=l T = wet, A3 = ev@/nlw:,

A’
w = cB/m

As rt$orted  in [2], them art?  certain  dmmim  of init id ccmditiom which lead to chaotic
trajectories. Thcz systt?m  is chaotic, for instance at x = 1.5; y = O, z = 4.0, ZZ = VY = v, = O
at i = O. Wt? have? XX?produccd  these rc?sul ts (see Fig. 1 ) Ly s(dving  Eqs.  (146), (147)
mmerim.11  y.

The ill]l]lelllel~tatif)l~  of the stabilization principle, i.e. simultaneous solution of Eqs.
(146) ad (147) (after their Reynolds clecc)x~~l]c~sitic)l)  into the f(mm (139)) and the constraint
(142) were pmformc?cl  numerically. The numerical  strategy wiis vmy simple: along with
the basic solution, a perturbed solution w(?re calculated and Co)npar(?cl  with the basic one
after certain tire? steps; if the perturbed solution divcrgd  faster than prescribed time -
polynomial, then an appropriate Reynolds fcmx? was applid  to supp:ess it; otherwise no
actions were  taken. The resulting trajectories in tile same x, y, z - phase  space  are plottd
ill Fig. 2. Tht?se  trajt?ctorit?s  reprtw?nt  ax~ averaged, or ~?xpec.t(?d  motion which is mt
chaotic any mom. It is important to t?mphasize  that this motion is stable in the sense  that
small changes  c)f tht? i:litial  conditions will cause small changm in the motion.

Actually this cxamlde  c?luciclates  the mechanism of tramiti(m from the Hamiltonian
mcchanim descrilling fully reversilde  mechanical processes (m the mimoscopic  level, to
irrevmsihle macroscopic mc)t  i(ms dt?scrihing  t berm dynamical 1 wocesses,  On the. same line
of argumentation, the stabilizati(m  principk?  ilnplcmtmts  the prt?f(?rmc.e  to mom probable
statm of tht? systtm over the less prol~able  states.
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DISCUSSION AND CONCLUSION

The problem of irrew?rsibility  in tl~(?rl~~oclyl~:ill~ics  w:is revisited  and analyzd C)I] tile
microscc)pic,  stodmstic , and mamwsc.c)l~ic  lwels  of dt’smil~tioll. It lVaS dmlmstratd  that
Ncwtmian  dynamics (as well as any dymmical  tlmmy whrre rll:iotic  s(dutions  [ire possil)le)
can be rc?l~rcsmttxl  in t 11(? Rt?yuolds  forlu wllel~ eat.] 1 dyl~alllical  vtiriablc?  is d{?c(mlp(m?d  into
th(? mean and fluctuation comp(m(?nts. Addititmal  equations cx)l~l)lillg  fluctuations and the
mcxm  values follow fr(ml the st ahilizat  ion principle f(mmd at(xl ill [11] :incl briefly descrild
ill the previous sec.tiom. Tilt? ll~ain idt?a of this print.iplt? is th:it tllc?  fluctuati(ms  lllust lM
sdm.tc?d  from tll(? condit,icm that they SUpljIess th(! original  ill st aljilit  y down t c) a neutral
stability. Supplml~mlt  t?d by t hc? st abilizat  ion princi]de,  tll~:  H a milt (mian, or Largranim  for-
malisms can describe the tramiti(m from fully reversible? to irrevmsiblc?  motions as a result
of tlm [It:collll]c)siti(jll  of d:iotic  motions (which are v(?ry likely to occur  in many - body
problmw)  into regular (llltt(:ros(:ol~i(:)”  motions”  :ind fluctuations. Actually the stabilizatim
pri:]ciplc implmmmts  the preftmmc.t?  t () m( me prol~ahle states of the syst ml ovt?r  the less
prol~alde  statc?s,  and froll]  th[tt  vit?wpoillt  it can Le associated  with the avmagillg  protdure
exploittd  in statistid  lllecll:inics. Howev(r, tile averaging  IJroct?clure was always txmsid-
t?rt?d  as an “alit?n intrusitm”  into tht? classical mt?chanics,  and tlltit c:iusd many discussions
around the? l~roblt?m  of irrt?versil~i]it  y (m t 1)(? mac.r(wc(q>ic’  lmel, on tht? COlltlaly, the sta-
bilizat  ion primiplt?  is a part of Newtxmian  mc?ch:inic.s  (M wdl  as a part c)f any dym.mid
theory where  dmotic  motions mm occur),  and therefore, it provides formal mathematical
explanati(m f(m the transition from fully rev(?rsiljl(’  to irrevmsil~le  l}roc.esses.

01~ tlw stochastic ltwd of desmipti(ml  new l~l~tl~()~~l(~llc)l(  )gic;il  f(m.e  with mn-Lilm.hitz
propmt  ies is int roduc.d. This  f(m:e as a result:illt  of {i large nuder of dlisiom of a
st?lt?ctd  particle with other partic.k?s,  has c.harac.teristic.s  which arc? ulliqm?ly  d(?fint?cl  by the
t llerlllc)clyllal::ical  paralmt ers of t he process under  (’(msidt’rat  ion, :illcl it rtq>resmlts  a part of
the lll:ttllt?lll[~ticz~l  f(mmalism  (Inscribing  rallclc)lll-w’:illc-lil<(:  processt?s  without invoking my
probabilistic argummts.

Additiomd  nm-Lipsc.itz tl~erl~l(>cly~lall~it::il  forces  were illcorlx)ratt?d  into macroscopic
models of transport phenomena  ill order tc) introduce a tinlt?  sc:tle. These  forms art? ~?ffec.tive
cmly  within a small  domain around equilil~ria. Wi thout  cziming  my changes  in other
domains, they are rt?spmsil~lt?  for finite  time of :ipproaching ~:quilibria. Such a property
is very important, for illt erprt?t  at i(m of irrt?versilji  lit y 01] t l~t! marrosml)ic  scale.  Inclc?d,
thert? is always am (?xtrt?mely  small (lint Il(m-zero)  prolml)ilit  y th[it a particle performing
a random walk can rt?tmm  to its original position lmssing through all of its previous steps
backward, aml th(?refore,  this effc?ct  should not be excludd  from the scduticms  to the
macroscopic equat i(ms if tlwy are olx+(?rvd during i nfhit dy largt? p(?riocl of time. However,
t hmx? pra(.t idl y unrt’alist ic sit uat ions may be excluded fr(m t llt? c.omiderat ion in Case of
the modified mac.rostx)pic t?quati(ms  since tllt?y are Aarw.terized by a limitt?cl time sale,
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